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Attenuation and focusing of electromagnetic surface waves 
rounding gentle bends 

M V Berry 
H H Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 lTL, U K  

Received 14 July 1975 

Abstract. We study electromagnetic waves in and near dielectric surfaces S whose radii of 
curvature R are large compared with the surface wavelength 2 n / K , ,  for cases when the 
dielectric constant c < - 1. If such gentle bends are convex towards the vacuum the wave 
is not perfectly bound-it attenuates with decay length K , - ’ ,  the lost energy being radiated 
to infinity. The radiation appears to emerge tangentially into vacuum from the height z, 
above S where the wave changes from evanescent to oscillatory. We obtain analytic formulae 
for z ,  and K, in terms of K , R  and c. When S is concave to the vacuum we argue that there 
should be no attenuation. O n  general gently bent surfaces the wave energy travels along 
rays that are geodesics on S. We discuss the focusing of families of rays on S and show that 
the imperfect focus of a plane wave incident on a general circularly symmetric hill is a cusped 
caustic with two rainbows as asymptotes. Perfect focusing is also possible and we calculate 
the shape of the ‘geodesic lens’ that would produce this. Finally, we suggest some experiments 
to test the theory. 

1. Introduction 

A flat interface between vacuum and a material with negative dielectric constant can 
support bound electromagnetic waves which travel along the surface and decay in both 
directions away from it. These electromagnetic surface waves are often called ‘surface 
plasma oscillations’ or, when quantized, ‘surface plasmons’. They have been observed 
on the surfaces of metals and semiconductors, and are the subject of an extensive 
literature which is summarized in excellent reviews by Economou and Ngai (1974), 
hereafter called I, and Kliewer and Fuchs (1974), hereafter called 11. 

When the interface is not flat, the surface wave is no longer bound-it radiates into 
the vacuum, and may be excited by radiation incident from the vacuum. The literature 
(see I and 11) contains theories of waves on surfaces which are cylindrical, spherical, 
weakly periodically rough (gratings) and weakly randomly rough (see also Celli et ul 
(1975) and Marvin et a1 (1975)). However, there is no general discussion of gently bent 
surfaces. By ‘gently bent’ we mean that the radii of curvature are large in comparison 
with the vacuum wavelength A, so that the surface is sufficiently locally flat for the 
surface wave to be almost perfectly bound. Over great distances such surfaces may 
however depart arbitrarily far from any chosen plane and so cannot be considered as 
perturbations of a plane. 

In this paper we generalize results implicit in previous theoretical treatments (I) of 
cylindrical surfaces and make predictions and conjectures about surface waves on 
general gentle bends. We show that the effect of curvature is to cause the surface wave 
to attenuate in a way that depends on the local curvature, by a mechanism that is totally 
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different both from the diffuse scattering caused by small-scale random roughness and 
from Joule heating. We obtain formulae for the attenuation coefficient as a function of 
frequency and curvature and suggest experiments to test the correctness of these formulae. 
In addition, we discuss the focal structure of surface waves refracted by smooth surface 
irregularities (‘hills’). 

First it is necessary to outline the theory leading to the basic equations. We seek 
electromagnetic fields 8, 9, &!I, H, current density $ and charge density Q, all these 
quantities being position- and time-dependent. Only wavelengths 2 greatly exceeding 
atomic dimensions will be considered ; therefore the correct theoretical framework is 
provided by Maxwell’s continuum equations and the conservation of charge, namely 

a 3  
V x & =  -- 

c?t 
V . 9  = Q 

V . B = O  a 9  
V X Z  = $+- 

d t  

20  

d t  
V , $  = -2. 

For monochromatic fields with frequency o( = 271c/L) we introduce complex frequency- 
dependent fields, currents and charges by 

{&, 9, W ,  Z, $, Q) = Re e-iut{E, D, B, H ,  J ,  p } .  (2) 

If the medium is non-magnetic and has a response which is linear and local, then it can 
be specified by its conductivity O(O) and relative permittivity €,(CO) and the fields are 
related by 

J = oE D = cOcrE B = poH (3) 

where co and p o  are respectively the vacuum permittivity and permeability. From 
equations (l), (2) and (3) it is an elementary exercise to derive the following equation 
for B in each homogeneous region : 

V 2 B +  k2cB = 0, (4) 

where k 
defined as 

o / c  is the vacuum wavenumber and E(W)  is the complex dielectric constant, 

io(w) 
c ( 0 )  = cr(0)+-. 

€ 0 0  

In vacuo, €(U) = 1. 
Surface waves arise when E(O) is approximately real and when Re c ( o )  < - 1. These 

conditions can be satisfied in metals and semiconductors. In a metal, free electron 
theory (see I) gives the approximation 

f ( 0 )  % 1- 0,’ 
02[1 +(i/o.r)] 

where up is the plasma frequency (typically 10l6 s - I )  and T is the relaxation time 
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(typically s). Since wp7 is very large, it is possible to choose w in the range 

$>,>>- 1 
7 

(7) 

and equation ( 6 )  shows that c(w) is then indeed real and less than - 1. 
Now we specialize to the two-dimensional problem where the surface curves in any 

xz plane but not along y, and where the fields are independent of y (we shall consider 
waves on more general surfaces in §§ 5 and 6). In this case surface waves only exist for 
the polarization corresponding to B pointing along the direction j of the y axis. This is 
called ‘p polarization’ (see I). Thus we write 

B = j B ( x ,  z ,  w)  (8) 
and of course equation (4) holds with B replaced by B. The boundary conditions on B 
across the medium-vacuum interface S can be found from the integral forms of equation 
(l), using equations (2) and (3). We obtain 

(9) 

continuous across S .  Finally, we shall require the Poynting vector E, which gives the 
areal power density. In terms of the complex scalar wavefunction B, l7 is given by 

1 
B and pw,, 

2. Flat surfaces 

We work briefly through this well-known case in order to establish results that will be 
used subsequently for curved surfaces. Let the flat surface S correspond to z = 0, with 
z > 0 vacuum with t = 1 and z e 0 dielectric medium with c < -1. Let us seek a 
surface wave travelling along + x  with ‘surface wavenumber’ K(w), and decaying as 
/zl  -+ cc. Inspection of equation (4) (with (8)) shows that such a wave is indeed possible, 
and has :he form (figure 1) 

B(x, z )  = exp(iKx) exp[ - z ( K 2  - k 2 ) ” 2 ]  (z > 0) 

( z  < 0)  = exp(iKx) exp[ + z ( K 2  + I cI k 2 ) ’ i 2 ]  (11) 
where we have normalized lBj to be unity on S .  

E = I  .p 
2 

X S 

c 4 -I 

E = I  
2 

X PS p c 4 -I 

Figure 1. Bound wave on a flat surface. 
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The formulae (1 1) satisfy the wave equation and the first of the boundary conditions 
(9). To satisfy the second we must match (~B/C?Z)/E across S. This constrains the surface 
wavenumber to be 

This ‘dispersion relation’ shows that the surface wave propagates along x without 
attenuation ( K  real) if €(U) < - 1, and that we then have K > k so that the wave (11) 
is indeed evanescent (and not propagating along z )  for z > 0 (for z < 0 waves are 
evanescent for all real K). 

The Poynting vector (equation (10)) for the wave (1 1) is directed along the x axis. 
The total power flowing is P where 

B*BB 
dzlJ(zf = - c2 [ dz-- 

CO 

P = 
2pow f az 

In the last step we have used equations (1 1) and (12). Finally, we remark that a surface 
wave would not exist if E rather than B pointed along j (‘s polarization’); for then VE 
rather than VB/r would be continuous across S and no wave of the form (1 1) can satisfy 
this condition. 

3. Cylindrical ‘kuends-exact solution 

A gently bent surface is locally flat, that is, its slope is locally constant. Therefore we 
expect locally at least to be able to find surface waves of the kind just discussed (equations 
(1 1)-(13)). To the next approximation, the curvature of a gently bent surface is locally 
constant, so that any local modification of the propagation of the surface waves can be 
found (in the two-dimensional cases we are presently considering) by studying propaga- 
tion around bends which are portions of circular cylinders. 

Therefore we consider surface waves on a cylinder of radius R, with vacuum outside 
and dielectric inside. In cylindrical polar coordinates r ,  4 the wave equation (4) is 
separable, and the family of solutions specified by the separation constant a is 

B(r, 4)  K eia4Hb”(kr) or eiobH(2) a ( k  r 1 ( r  > R )  
(outgoing) (incoming) 

K ei@Ia(krJlc1) (r < R )  (14) 

where H:”, Hb2) and I ,  denote standard Hankel and modified Bessel functions 
(Abramowitz and Stegun 1964, ch 9). The solution I ,  for r < R decays away from S 
towards the origin r = 0, as required for a surface wave. For r >> R both Hi’) and Ha), 
as well as all combinations formed from these, are oscillatory rather than decaying 
functions of kr. This tells us that surface waves completely damped away from S cannot 
exist : they must radiate and/or be fed by incident radiation. We choose the outgoing 
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solution Hb') to describe purely radiating waves. We do  not constrain a to be an integer, 
because we are not considering complete cylinders but only locally cylindrical bends. 

Next we put the solution (14) into closer correspondence with the flat surface solution 
(1 1) by defining new coordinates z ,  l ,  and a new parameter K instead of a, by 

z = r-R 5 = R~#J K = a/R (1 5 )  

B(5, z) = eiKSHgA(kR+ kz)[Hgl(kR)]-' 

(figure 2), and normalizing IBI to be unity on S .  This gives 

z > o  

= eiKCzKR[kJIcI(R + z)l [zKR(kJlcl R)l- ' z < 0. (16) 
From equations (15) we see that 5 measures distance on S,  ie when z = 0, but corresponds 
to a linearly scaled distance when z # 0. Therefore K has the same meaning in equation 
(16) as it does in equation (1 1) : it is the surface wavenumber. 

Y 

6 -" 6 

Figure 2. Quasi-bound wave on a cylindrical bend 

The formulae (16) satisfy the wave equation and the first of the boundary conditions 
(9). To satisfy the second we must match (dB/dz)/c across S.  This gives the following 
equation that must be satisfied by K for the wave with frequency o : 

where primes denote differentiation of functions with respect to their argument. For 
real argument and order, I and I '  are real, but H and H' are complex : moreover, for 
the special values of the argument for which H is real it is always the case that H' is 
complex, and vice versa. Therefore equation (17) has no real solutions K ,  the surface 
wavenumber is a complex quantity, and we may write 

(18) 
In § 4 we shall solve equation (17) to obtain approximate expressions for K ,  and K i .  

First, however, we discuss the physical interpretation of a complex surface wavenumber. 
It will later emerge that Ki has the same sign as K , .  This means (equation (16)) that the 
surface wave decays as it rounds the bend (figure 2), as it must since radiation is appearing 
at infinity and none is being fed in. The attenuation is described by K i .  We expect, 
and shall later confirm, that K ,  is very close to  the value (12) found for K on a flat 
surface. Therefore K ,  > k and the wave decays as z increases away from S.  But at some 

K(w)  = K,(w) + iKi(o). 
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value of z,  z, say, there must be a transition from decay to an outgoing complex oscil- 
lation which persists out to z = x. To find z ,  we realize that the solution (16) corresponds 
to a wave with a definite constant angular momentum, proportional to K,R. The 
linear transverse momentum, proportional to K1, (say) is not constant but decreases as 
r increases according to 

Klt(r)r = K,R KrR ie K,,(z)  = - 
R+z '  

Eventually K I ,  decreases to the vacuum wavenumber k, and there can be real propagating 
(non-evanescent) waves along z. This is the level z ,  at which the transition to radiation 
occurs (figure 2), and equation (19) gives 

z ,  = (:-I).. 

This physical argument is confirmed by inspection of equation (16) : the Bessel function 
H'' )  changes from decaying to oscillatory when its argument equals the real part of 
its order (Abramowitz and Stegun 1964, ch 9), and this occurs precisely at the level 
z = z ,  given by equation (20). 

Finally, we remark that the complex solutions K of equation (17) are special cases 
of the Watson-Regge poles of scattering theory (see eg Newton 1966). First we notice 
that K is proportional to the angular momentum number a of the basic solution (14). 
Next we realise that the purely outgoing waves we are seeking correspond to solutions 
of a scattering problem for which the amplitude ratio of scattered (outgoing) and incident 
waves is infinite. But this ratio is just the S matrix, so that the solutions of equation (17) 
also give the complex angular momentum numbers at which the poles of the S matrix 
are located, and these are precisely the Watson-Regge poles. However, this problem 
has no obvious precise quantum mechanical analogue, because of the unusual boundary 
condition on VB. 

4. Cylindrical bends-asymptotic approximation for attenuation 

Before outlining the solution of equation (17) we shall obtain formulae for K ,  and K ,  
using physical arguments. The bends under consideration are gentle, so that k R  >> 1. 
Therefore there should be a surface wave closely similar to that on a flat surface (4 2 )  
and to a first approximation we expect the real part K ,  of the surface wavenumber to 
be given by equation (12). To  find the imaginary part Ki we use the conservation of 
energy, and equate the power lost travelling along S to the radiant power received at 
infinity. We assume, and our later results will confirm, that K i  << K , ,  so that the surface 
wave is only slightly damped in one surface wavelength. 

The wave decays along z for z < z ,  (equation (20)) : this range equals many surface 
wavelengths, so that the wave should closely resemble that on a flat surface over the 
range where it has significant magnitude (cf the sketches of B on figures 1 and 2). There- 
fore the total power P(5)  flowing round the bend at 5 should be given by an argument 
virtually the same as that leading to equation (13). The only difference comes from the 
small decay exponent K i t  and leads to the result 
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Thus the power lost as the wave travels a small distance d( near 5 = 0 is 

This power is radiated to infinity, the radiation emerging tangentially at z = z ,  when 
the wave changes from evanescence to fully oscillatory. The energy will travel along 
straight lines (rays in free space), and elementary geometry (figure 3) shows that when 

Figure 3. Power lost in d< emerges along L. 

the power from d( reaches a large radius r it crosses normally a circular arc of length L, 
where 

Therefore 

where Il, is the magnitude of the Poynting vector. 
Equations (22), (241, (10) and (16) then give 

where we have written K ,  for K since we are evaluating Ki to first order only. For the 
Bessel functions we employ standard asymptotic forms. In the numerator the arguments 
of H* and H are kr, so that we have ‘argument >> order’ and formula (9.2.3) of 
Abramowitz and Stegun (1964) leads to 

(26) 
2 

lim r Im H$):(kr)Hf$(kr) = -. 
r -  x nk 

In the denominator both the argument k R  and order K,R are large (gentle bend) but 
K ,  > k (equation (12)), so that we have ‘argument < order, order large’, which calls for 
the ‘Debye formulae’ (Abramowitz and Stegun 1964, p 366). Neglecting exponentially 
small terms we may approximate H(’) by iY, where Y is the Bessel function of the second 
kind, and we obtain 

(27)  
2 expQK,R{ln[K,/k+(l +K,2/k2)’”]  -(1 -k2/Kf)’ /2})  

IHp#R)I* % 
TIK,R(  1 - k 2 / K f )  
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Substituting equations (26) and (27) into (25) and using equation (12) for K,, we obtain, 
after a little algebra : 

K , = k - -  (I€/! 1) 1'2 

These are the main results of this section. They can also be obtained directly from 
equation (17), in a less physically instructive way, as follows: once again we have 
'argument < order, order large' and we can employ the Debye formulae for the Bessel 
functions. Now we decompose H g i  into its real and imaginary parts, that is 

(29) 

As before, the i Y  term dominates exponentially over the J term. However, if we omit 
the J term and use the asymptotic forms we find that equation (17) is satisfied by K = K , ,  
where K ,  is given by the first part of equation (28), without any imaginary part K i .  The 
reason for this is that replacing H by i Y  implies the use of standing wave solutions 
instead of the outgoing solutions (16), and this corresponds to a non-decaying surface 
wave being fed by an incident wave at the same rate as it radiates. If we do include 
the J term in equation (29), and treat it as a perturbation, we obtain a small imaginary 
correction iKi to K,, where Ki  is given exactly by the second part of equation (28). 

We now study the 'attenuation ratio' q of the imaginary and real parts of K. 
Equations (28) give 

H(1) - J 
K R  - KR+~YKR. 

In terms of q the power flow (21) decays in one surface wavelength 2nK, by the factor 

while in travelling one radian round the bend the decay factor is 

Our analysis is valid only if q << 1, and equation (30) yields, encouragingly, the following 
limiting cases : 

q = o  if kR -+ cc (flat surface) 

or 

I C (  .+ 1 (threshold at which surface waves appear-corres- 
ponding to w = wdJ2 on free electron model) 

or 

161 4 x (ie w .+ 0 on free electron model). (33) 

The last case, 1c1 -+ cc calls for comment. By using the Debye approximations for the 
Hankel functions HgJR(kR), we have assumed that the argument is less than the order. 
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0.10. 

9 

But as /cl --* x, K ,  -+ k (equation (28)) so that the argument becomes equal to the order 
and our formulae cease to be valid. Analysis of the Debye approximations using the 
‘transitional’ formulae (especially (9.3.24) of Abramowitz and Stegun 1964) shows that 
the following condition will guarantee the applicability of the basic results (28) and (30): 

113 

I E ~  << ( 3 l ~ R ) ’ ’ ~  i e c o > c o ( L )  k R  on free electron model. (34) 

In the low-frequency limit when this condition is violated, the argument and order of 
H”) are so nearly equal that the wave hardly decays away from the surface before the 
height z ,  (equation (20)) is reached and radiation begins-in these circumstances a 
‘bound surface wave’ can hardly be said to exist. It might be objected that this analysis 
of the regime I E ~  -+ x is unrealistic, because as o -+ 0 dissipative effects become important 
(equation (6) )  and we leave the frequency range (equation (7)) in which E is real, so that 
an undamped surface wave cannot exist, even on a flat surface. However, dissipative 
effects are unimportant unless o 5 5 - l  and t-’ is less than the limiting frequency in 
equation (34) provided 

(344 
typically, and this condition will in practice always be satisfied. Therefore, there is 
always a frequency regime in which dissipative effects are unimportant but where rapid 
radiative attenuation of surface waves occurs and formulae (28) and (30) are invalid (the 
Watson-Regge poles K will lie far from the real axis). This emphasizes the fact that 
the radiative attenuation that is the subject of this paper is fundamentally different from, 
and not to be confused with, attenuation due to resistive dissipation associated with an 
imaginary part of E .  

From the limits (33) it is clear that as / E [  increases from 1 to x, with k R  held fixed, 
q as given by equation (30) increases at first and then decreases. However, the maximum 
value occurs when IcI - (kR)2’3 ,  and equation (34) shows that this is outside the range 
of validity of equation (30). Therefore q is an increasing function of 14 over the range of 
validity of equations (28) and (30). Figure 4 shows curves of q(Ic1) for 1 < IcI < ( k R ) 2 / 3  
computed for various values of kR. 

k R  < 2 ( 0 , 2 ) ~  - 10” 

0.15 

ili 

OB: 0 

IO 

IO0 

J 
I 5 IO 15 I c l  20 

Figure 4. Attenuation ratioq (equation (30)) as a function of / c l  In the range 1 < / c l  i (kR)”’ 
for the fixed values of kR marked on the curves. 
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Finally, we point out that Lapin (1969) has performed a similar analysis for acoustic 
surface waves on a solid cylinder surrounded by liquid. 

5. Gently curved surfaces of general form 

No rigorous results exist for general curved surfaces so this section will be somewhat 
speculative. We begin with surfaces S curved in the xz plane but not along y ,  and 
specified by their varying radius of curvature R(t), where t is the distance along S 
measured from an arbitrary origin; we take R positive if S is convex towards the vacuum. 

If S is gently curved, R varies slowly, and if R is positive we can treat S as locally 
convex cylindrical and apply the theory of the previous two sections. Then the local 
attenuation at 5 is governed by K , ( ( ,  w), obtained by setting R = R(5) in the second of 
equations (28). An obvious generalization of the arguments leading to equations (21) 
and (22) gives the power flowing past the point 5 in terms of the power flowing past 
4 = Oas 

5 

0 
p(<) = ~ ( 0 )  expj - 2 1 dt’Ki(t’5 a)) ( 3 5 )  

provided 4 increases in the direction of propagation of the surface wave. 
To deal with parts of S that are concave towards the vacuum, for which R(5) < 0 we 

must repeat the analysis of $ 3  for cylinders filled with vacuum and surrounded by 
dielectric. The surprising result emerges that it is possible in this case to have a true 
surface wave which is nowhere oscillatory or radiative, whose form is given not by 
equation (16) but by 

B ( ( ,  z )  = eiK6KKiRl(kJ’lcI(IRI + Z))[KKIRl(kJ/EI IRI)l- ( z  ’ 0) 

= e iKrJKIRl(k( lRl  + Z ) ) [ J K I R l ( k l R I ) I -  ( z  < 0) (36) 
where K K I R l  is the modified Bessel function of the second kind. This leads to an equation 
for the surface wavenumber that is analogous to equation (17) but is purely real with 
a real solution that for large klRl becomes precisely K ,  as given by the first of equations 
(28). This strongly suggests that surface waues on concaue parts of S are not attenuated, 
a conjecture supported by the observation that as we approach a point of inflexion on S 
along a convex part of S ,  the attenuation K, (<) ,  as given by equation (28), vanishes 
exponentially. 

Up to now we have considered S as locally cylindrical. Now we ask : what will be 
the effects of locally changing curvature? Recall first that the introduction of a locally 
changing slope, ie curvature, did not alter the real part K ,  of the surface wavenumber 
but introduced a qualitatively different effect, namely radiative attenuation described 
by Ki .  Similarly, we expect that the introduction of a locally changing curvature will 
not alter K ,  or K i ,  but will introduce another qualitatively different effect; we conjecture 
that this is reflection of the surface wave. It seems very difficult to estimate the magnitude 
of this effect, but arguing by analogy with the quantum mechanical reflection of waves 
above a smooth potential barrier (Berry and Mount 1972) we suggest that the reflection 
will be exponentially small-more precisely of order 

(37) exp( - k2/[d(curvature)/d5]) = exp( - k2RZ/R‘) 

-for gently curving ‘analytic’ surfaces none of whose derivatives R’((), R”(5) etc is 
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discontinuous. If equation (37) is correct, reflection will be an even weaker effect than 
attenuation, which from equation (28) is of order e-lrR. 

It is not possible to test these conjectures by solving the wave equation (4) exactly 
for some idealized surface S with changing curvature. The simplest case would seem 
to have R'(()  constant, but this is a spiral, which is hardly promising. Alternatively, 
we might choose S to be a coordinate surface of the elliptic or parabolic cylindrical 
system, for which the operator V2 separates. However, we quickly discover that equation 
(4) is not separable in these systems (see Morse and Feshbach 1953, p 513);  the point- 
which does not seem always to be appreciated (11, p 3 9 6 b i s  that the wave equation is 
separable if any of these coordinate surfaces S is a perfect reflector on which the solution 
or its normal derivative vanishes, but is not separable if S bounds two regions in which 
waves can exist. 

Finally, we consider waves on surfaces gently bending in x, y and z ,  that is surfaces 
with two principal curvatures R;' and R;' at each point, restricted only in that k R ,  
and k R ,  must both be large. Our previous curved surfaces S were locally cylindrical, 
so that one curvature vanished; the Gaussian curvature (R1R2)- '  was zero, and S was 
'developable' from a plane without stretching or tearing. When the Gaussian curvature 
is non-zero, S is still locally flat, and surface waves still exist, with surface wavenumbers 
whose real part K ,  is given by the first of equations (28). This is proved in the appendix. 
Because of the short wavelengths, the waves will, to a close approximation, propagate 
according to the laws of geometrical optics (see appendix), that is their energy will travel 
along rays, confined to the surface and satisfying Fermat's principle of least time (Keller 
1958, Lewis et a1 1967). If S is time-independent and the underlying dielectric spatially 
homogeneous, this implies that the rays are geodesics on S.  

If the surface rays are considered as space curves r ( ( )  = (x(t), y ( 0 ,  z(()) ,  where ( is 
arc length, then they are completely determined by specifying the initial conditions 40) 
(which must lie on S) and r'(0) (which must lie in the tangent plane to S at r(0)). Standard 
differential geometry (eg Stavroudis 1972) then gives the result that at any point on the 
ray the principal normal U( ( ) ,  defined as 

lies along the normal to S at 45). This 'dynamical equation' (which is analogous to 
Newton's second law for particle trajectories or Snell's law for the refraction of rays 
in space) can be used to derive the curvature X(5) and torsion S(() of the surface rays 
at 5. If the ray tangent r'(5) makes an angle 8 with the principal direction on S corre- 
sponding to the curvature R ;  ', then X and 9 are given by 

The cases previously considered correspond to taking R ,  = cc and l3 = 0;  then the 
ray is a plane curve (torsion-free) on a locally cylindrical surface. Ray propagation on 
surfaces that can be referred to a reference plane will be considered in detail in 06. 

A single ray does not define a surface wave : it is necessary to have a family of rays, 
whose orthogonal lines are the surface wavefronts (see appendix). This raises the new 
possibility of focusing of surface waves where an initially smooth wavefront develops 
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kinks; these kinks lie on caustic lines, that is on envelopes of the ray family. The caustic 
lines themselves are smooth except for isolated singular points at which the caustic 
has a cusp; this is a consequence of the topological ‘theory of catastrophes’ (Thom 1969, 
1975). Cusped caustics can arise on curved surfaces from a straight initial wavefront 
(figure 5(a)), or on flat surfaces from an initial wavefront that is a noncircular arc concave 
towards the propagation direction (figure 5(b)). In the next section we shall show how 
caustics are generated when surface rays are refracted by a hill on S .  In the present 
context the importance of caustics lies in the powerful intensification of the surface wave 
in their neighbourhood. According to geometrical optics (see appendix) the intensity 
IBI2 would be infinite at a caustic on S ,  but it is precisely on caustics that geometrical 

Figure 5. Patterns of surface ray tracks (-), wavefronts (- - - -) and caustics (-) 
(a) on a curved surface S and (b)  on a flat surface (straight tracks). 
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optics breaks down, and it can be shown (eg Pearcey 1946,$ 4 of Berry 1975) that the 
intensity rises to large values given not by formulae (A.l) and (A.9) but by 

0 [ ( K ,  R )  12] on a cusp of a caustic on S 

on a smooth part of a caustic on S 

on a point on S that does not lie on 
a caustic. 

(40) (BIZ = 

Waves traversing general curved surfaces should of course radiate whenever S is 
convex to the vacuum, by a mechanism essentially the same as that described in $53 and 4. 
The attenuation should be given by equations (28) or (30), where instead of R i t  is 
necessary to use the radius of curvature X -  (equation (39)) of the ray at the point 
considered. (This is borne out by analysis of surface waves travelling parallel to the axis  
of a cylinder: the surface curvature is zero and there is no attenuation whether the 
dielectric is convex or concave to the vacuum.) The radiation will appear along a line 
parallel to the tangent to the surface ray at the point concerned, lying at a perpendicular 
distance z ,  above the surface (equation (20)). In addition, as discussed earlier, we would 
expect very weak reflection at places where the surface ray curvature is changing. 

6. Cusped rainbows in waves focused by hills 

In order to justify the remarks made in $ 5 about caustics (figure 5(a)) of families of 
surface rays, we consider in detail geodesics on a surface S whose height z above a 
reference plane R = (x, y) is (figure 6) 

z = f ( R ) .  (41) 

We call the direction of increasing z the ‘upward’ direction. For a ray (geodesic) the 
arc length 5 on S is an extremum. We describe the rays by their projections R(l)  on the 
plane R,  where 1 is arc length on R (figure 6). We call R(l) the track of the ray. Then, for 

Figure 6. Ray on S and track on R plane. 
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any path between two points on S we have 

5 = d t  = [ dI[R’’ +(R‘ .Vf)2]”2 

where R’ f dR/dl is the unit tangent vector of the corresponding track. The ‘Lagrangian’ 
function is 

L(R, R’) = [R”+(R‘.  Vf)’]”’ 

R“ = (R’(R‘ . Vf) - Vf)(R’ . V)’f 

(43) 

From this can be derived the Euler-Lagrange equations for the tracks, namely 

(44) 

where we have written a form valid when lVfI4 can be neglected (in practice this will be 
a good approximation if the slope of S relative to the R plane never exceeds 30”). It is 
amusing to note that the same equation can be derived from the following ‘Hamiltonian’ 
function involving the canonical momentum P conjugate to R : 

H(R, P) = +(P’ - ( P  . Vf)’/l+ (Vf )’). (45) 

(This gives an equation for R as a function of 5 ,  and it is necessary to change parameters 
from 5 to 1 in order to obtain equation (44)) The equations of geodesics can also be 
obtained from the Hamilton-Jacobi equation (A.7) for the wavefronts (Lewis er a1 1967). 

The ‘dynamical equation’ (44) enables the curvature % of the track to be calculated. 
is defined as 

% = (R‘ x R“) . i (46) 

and must be distinguished from the spatial curvature X (equation (39)) of the ray. The 
track is turning to the left if %? > 0, and to the right if ‘G < 0, as seen by someone looking 
along R‘ with his head pointing along +i. Let a be the angle measured clockwise from 
the vector Vf to the track tangent R’ (figure 6), and let CR, be the upward curvature of 
the ray (not the track), ie 

C R .  (R’. V)’f(R). (47) 

‘G = lVfl sin&,,. (48) 

Then from equation (46) we obtain 

Now if S is represented as a map on R by contours f (R)  = constant, Vf points along 
the lines of steepest ascent on the map, ie perpendicular to the contours. Equation (48) 
is analogous to Snell’s law of refraction for rays in smoothly inhomogeneous media; 
its qualitative content may be expressed thus : if the ray curves upwards/downwards, 
the track turns away from/towards lines of steepest ascent on the R-map of S. The 
implications of this rule are different according to whether the Gaussian curvature of S 
(that is the product of principal curvatures R; and R; ’) is positive or negative in the 
region considered. If the Gaussian curvature is positive then S is wholly concave or 
convex, and all rays, whatever their direction, curve upwards ( S  concave) or downwards 
(S convex); then the refraction law can be stated in the following ‘invariant’ form which 
is independent both of the sense in which the track is traversed and of the sense of i : 
the normal to the track at any point R makes an angle not exceeding 90” with the normal 
to the contour passing through R provided both normals point away from the convex 
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sides of their curves. If the Gaussian curvature is negative (so that S is locally saddle- 
shaped) then some rays curve upwards and some downwards, depending on their 
direction, and the corresponding invariant refraction law is more complicated. 

Now we specialize to surfaces S with rotational symmetry about the z axis, so that 
in terms of plane polar coordinates R = (R, 8) the height function f(R) depends on R 
only. We call such surfaces ‘hills’, this terminology emphasizing that we shall consider 
only cases where f (R -, E) = 0. (Of course geodesics are independent of the sign off, 
so that every hill has an equivalent depression.) Geodesics on a hill will conserve their 
‘angular momentum’ B. This quantity is defined in terms of the Lagrangian (43) as 

2L R28’ B = - =  
26‘ [RI2 + R28I2 + Rf2(df/dP,)2]”2 

from which we derive the polar equation for the track R(8), namely 

(49) 

it is easy to show that B is the impact parameter of the geodesic, that is its distance at 
R = x from the parallel track through R = 0 (figure 5(a)). 

We have here a situation closely analogous to the classical scattering of particles by 
a spherically symmetrical force field-‘potential scattering’-and it is natural (Ford and 
Wheeler 1959a, b, Berry and Mount 1972) to calculate the dejection function O(B) which 
gives the total deflection (figure 5(a)) of a track along its whole infinite length. From 
equation (50) we obtain 

This is always negative for B > 0, which means that all hills are attractive. This contrasts 
with the case of potential scattering, as does the fact, obvious from equation (50), that 
the distance of closest approach is simply R = B, whatever the shape f(R) of the hill. 
If the hills are small perturbations of the plane (I(df/dR)I << l), then equation (50) takes 
the simpler form 

R(R2 - B2)’” 
@(B) = - B  

closely analogous to the deflection function for particle scattering at high energies, with 
(df/dR)’ playing the role of the potential. We can obtain an explicit expression for O(B) 
if the hill is Gaussian, ie 

f (R)  = fo exp( - R2/2a2) .  (53) 
From equation (52) the expression is 

O(B) = -___ ‘lrfiB exp( - B2/a2). 
U 3  

(54) 

Next we study the focusing by a hill of a family of ray tracks that are initially parallel 
and described by the values of B from - cf;. to + cc (figure 5(a));  this is analogous to the 
scattering of a beam of particles by a potential. At infinity there is focusing at the 
rainbow angle 8, (Ford and Wheeler 1959a, b, Berry 1966a), defined (figure 5(a)) by 

6, = -O(B,) where dO(B,)/dB = 0. ( 5 5 )  
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For the Gaussian hill (53) we have 

In the near region there will be a paraxial focus at R = R, , defined as the radius at which 
rays with vanishingly small impact parameters B cross the forward direction 8 = 0. If 
I(df/dR)I << 1, R, is given by 

1 - . B  1 R = llm 
B-m lO(B)I IdO(O)/dBI J: (dR/R’)(df/dR)’ 

which for a Gaussian hill is 

a3 
R, = - 

f 5 J X ’  

(57) 

The point (R,, 0) is the cusp of a caustic joining the focus to the two rainbows at 
infinity. This caustic 8,(R) is the envelope of the family of ray tracks (figure 5(a)), defined 
as follows: let 8(R, B) be the outgoing part of the track, obtained from equation (50), 
of the ray with impact parameter B (so that 8 ( a ,  B) = O(B)). Then two rays touch at R 
if 

= o  ae(R, B,) 
dB 

B = B,(R) where (59) 

and the caustic is 

e m  = ow,  BAR)). (60) 

Some algebra shows that near the focus R, the caustic is given explicitly by 

2J2[(R/RC) - lI3l2 
3 [  1 + Rd(d30(0)/dB3)] 112 

8,(R) = + 
which does indeed have the necessary cusped form. 

Surprisingly, it is possible to achieve perfectfocusing at any chosen radius R = R, 
with a finite bundle of rays whose impact parameters B lie between +R,, by suitably 
choosing the shape of the hill. Such a ‘perfect geodesic lens’ has finite radius R, and 
infinite slope at R = R,. The lens shape f(R) can be found from the ray equation (50) 
by requiring all rays striking the lens to pass through the point R = R,, 8 = 0 and 
transforming this condition into Abel’s integral equation (36cher 1926). The result is 
that f (R) is given by 

We emphasize that this result is not restricted to paraxial rays. It is even possible to 
make rays focus on the far edge of the lens by taking R, = R,; then equation (62) gives 
f (RI as 
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This function and the associated ray tracks are plotted in figure 7. These ‘lenses’ are 
completely aberration-free : obviously there is no chromatic aberration (the geodesic 
rainbows (55) and (56) are not coloured), and there is no ‘circular aberration’ either, 
because the symmetry means that all bundles of parallel rays from whatever direction 
will focus on the circle R = R , .  

0 5, ’I- Z‘ 
I \\\\\\\ I 

Figure 7. Shape and ray tracks of the perfect geodesic lens for R ,  = R,  

At the edge of the geodesic lens the surface S is certainly not ‘gently bent’ and in 
practice the focus would be very weak because most of the rays would be reflected 
instead of being refracted onto the hill. This could be avoided by smoothing the dis- 
continuity in slope at R = R,  so that all radii of curvature exceed the surface wavelength 
2nlK. 

Finally, we remark that discontinuities in the slope of S cause ray tracks to change 
direction in accordance with an analogue of Snell’s law for discontinuous media. This 
can be derived from the Lagrangian (43), since the component of canonical momentum 
parallel to the discontinuity is conserved; the refraction law for the case where the 
discontinuity is horizontal is 

sin 8 
= constant across the discontinuity 

[ I  +cos2e(vjn)11’2 

where 8 is the angle made by the ray track with the normal to the discontinuity, and 
(Vf,) is the component of the slope of S normal to the discontinuity. 

A discussion of focusing of electromagnetic surface waves has been given by Shubert 
and Harris (1971), while Van Duzer (1970) and Mason (1973) consider the analogous 
problem for acoustic surface waves. These authors do not discuss caustics and rainbows, 
or aberration-free lenses, but they do  consider lenses of different material from the bulk, 
and ‘surface wave guides’ in the form of grooves. Recently Bell er a1 (1975) have claimed 
to study refraction of surface waves by dielectric prisms and cylinders on the vacuum 
side of a flat aluminium surface. However, for the microwave frequencies they used, 
equation (12) gives K ,  - k, so that the decay into the vacuum is extremely slow and the 
authors are really studying not surface waves but ordinary plane waves in the half-space 
above the aluminium. 
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7. Discussion 

The foregoing theory suggests a number of experiments. If a surface wave radiates 
tangentially (figure 2) when rounding a bend, then it must be possible (from the ‘incoming’ 
solution analogous to equation (16)) to excite a surface wave by tangentially illuminating 
a bend. Both predictions could be tested with the surface geometry sketched in figure 8. 

/5 
Figure 8. Proposed experiment to test attenuation 

The radiation should appear to come not from the surface of the bend itself but from 
the height z ,  given by equation (20). By varying the frequency and the radius of curvature 
of the bends, the basic formulae (28)-(32) could be tested. (The distance between the 
bends should of course be much less than the ‘dissipation length’ associated with the 
relaxation time 7.) 

Any of the various focal structures discussed in $ 6 could be produced by forming S 
into a hill of the appropriate shape. If the focus is made to occur at a point where the 
geodesics have a large spatial curvature convex towards the vacuum, then the focus 
should be a source of intense tangential radiation away from S. One way to achieve 
this would be to place a hill between the two bends in figure 8, with the focus falling on 
the second bend. The same geometry could be employed in reverse to excite a plane wave 
in a surface by intense tangential illumination of a point. 

Concerning the theory, it would be desirable to have a more rigorous treatment of 
the questions discussed in $ 5 .  Is there really no attenuation of a wave rounding a 
concave bend, or is the attenuation just very small? Exactly how much of a wave is 
reflected by a smooth change of curvature of S? Is it true that for a general ray, bending 
and twisting on a doubly-curved surface, the attenuation depends only on the local 
spatial curvature of the ray? 
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Appendix 

We show here that ‘p polarized’ surface waves will exist on any gently bent surface S .  
To label a general space point P we use its perpendicular distance z above S (ie z < 0 
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in the dielectric below S )  and two coordinates (5 ,  v )  giving the position on S of the foot 
of the perpendicular from P. This labelling will be unique if P is sufficiently close to S 
for no centre of curvature of S to lie on the perpendicular between P and S. If a surface 
wave exists, its form will be the following generalization of equations (8) and (1 1 )  : 

Lines of constant phase 4 are the surface wavefronts, and the normals are surface rays, 
the surface wavevector being 

( A 4  K ( L  v )  = kVSd45, v )  
where V, denotes gradient parallel to S.  The magnitude of U gives the intensity of the 
wave and will describe focusing, while the direction of U gives the polarization. For 
p polarization we require U .  2 to vanish. The decay exponents q> and q< are related 
by the boundary condition on B, and the appropriate generalization of equation (9), 
namely that (V x B) x i / c  is continuous across S ,  gives 

q< = -cq, ie q< = lf14>. (‘4.3) 

Of course equation (A. l )  is not an exact solution of the wave equation (4), but we 
do expect it to be a ‘geometrical optics’ approximation valid in the asymptotic limit 
k + cc corresponding to gentle bending of S on a wavelength scale. To illustrate this 
we demand that equation (A. 1 )  cause V . B to vanish, and we obtain 

V,.u+iku.V,4 = 0. 64.4) 

For large k the second term dominates and then equation (A.2) tells us that U .  K vanishes 
-ie the wave is transverse, as expected. 

Now we substitute equation (A. 1) into (4) ; this gives 

U + ik[uV,Zd + 2V,4 . Vu] + Viu = 0. 
ifz < 0 

The term in k2  dominates; equating its coefficient to zero gives an equation satisfied 
by the phase 4. Now 4 must be independent of z ,  and this implies that 

( A 4  q > + 1  2 = q:+€. 

Combining this with (A.3), we get the following ‘Hamilton-Jacobi’ equation for : 

Moreover, this gives with equation (A.2) a surface wavenumber 14 exactly the same as 
the value (12) for a flat surface. 

If we set equal to zero the term of order k in (A.5), we obtain after a little manipulation 
the following equation for the intensity )U(’ : 

K .  V, ln(lu1 - 2 )  = V, . K. ( A 4  
Now K .  V, measures the rate of change along a ray, and V, . K measures the divergence 
of ray bundles, and if t is arc length on S along a ray and w ( ( )  is the width of a narrow 



Surface waves rounding bends 1971 

ray bundle at < then equation (A.8) can be solved (see eg Berry 1966b, p 21) to give 

This is obviously the correct focusing law for families of surface rays. Points for which 
w(<) is zero lie on caustics as discussed in 99 5 and 6. 

We conclude that on general gently bent surfaces p polarized waves do  indeed exist. 
On surfaces that are not gently bent the term V i u  in equation (A.5) will become important 
and describes both the breakdown of geometrical optics and the way in which the B 
vector ceases to ‘hug’ the surface in an ‘adiabatic’ manner. 
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